Bromacil (C₉H₁₃BrN₂O₂) is a substituted uracil herbicide. It has a CAS name and number of 5-bromo-6-methyl-3-(1-methylpropyl)-2,4(1H,3H)-pyrimidinedione and 314-40-9, respectively. Bromacil is a colourless, odourless, crystalline solid that is available as wettable powder (WP), soluble concentrate, or granules. It may be formulated alone or with either 2,4-D (Calmix) or diuron (Krovar). Bromacil is soluble in various organic solvents even though it has a relatively high water solubility of 807 mg·L⁻¹ at pH 5 and 25°C.

By inhibiting photosynthesis at the electron transport chain, bromacil acts as a nonselective herbicide effective against most annual and perennial broad-leaved weeds and grasses as well as some brush species (OMAF 1994; Agriculture and Agri-Food Canada 1997). In Canada, bromacil is registered for broadcast and spot ground application to control weeds and brush on noncropland such as industrial sites, storage areas, parking lots, airports, dry ditches, fence lines, and railroads (Agriculture Canada and Environment Canada 1990).

In 1990, 2100 and 36 000 kg of bromacil were sold in Canada for domestic and commercial uses, respectively. Most of this was sold in Alberta (12 300 kg), Manitoba (9600 kg), and Ontario (9500 kg) (Agriculture Canada and Environment Canada 1990).

Spray drift, accidental spills, equipment-washing operations, and dumping of tank residues may contaminate surface waters. Irrigation and livestock water drawn from contaminated surface waters may threaten sensitive crop and animal species.

For more information regarding the use, environmental concentrations, and chemical properties of bromacil, see the fact sheet on bromacil in Chapter 4 of Canadian Environmental Quality Guidelines.

Water Quality Guideline Derivation

The interim Canadian water quality guidelines for bromacil for the protection of agricultural water uses were developed based on the CCME protocol (CCME 1993).

Irrigation Water

Bromacil is toxic to a variety of nontarget crop species. Sorghum (Sorghum vulgare) seedlings placed in nutrient solution containing bromacil at concentrations from 0.128 to 26.1 mg·L⁻¹ died after 11 d of exposure (Hilton and Nomura 1964). Chromosomal abnormalities in root tips of young dry barley plants (Hordeum vulgare), which as seeds were soaked in solutions of Hyvar X (80% WP), increased with increasing exposure periods (6–24 h), but not with increasing concentrations (50–1500 mg·L⁻¹ of bromacil) (Wuu and Grant 1966). The number of root cells with chromosomal abnormalities averaged 9.12% for treated plants in contrast to 0.68% for control plants. Bromacil residues (0.4 kg·ha⁻¹ a.i.) in fields that received four annual applications of 2.24 kg·ha⁻¹ a.i. did not impede emergence and early growth of barley seedlings or reduce grain size of mature plants grown 1 year later, but did reduce crop yield (Wiseman and Lawson 1970). By the third year neither germination counts, yield, or weight of grains of growth differed significantly between treated and control plants. Root growth of oat (Avena sativa) and radish (Raphanus sativus) seedlings was negatively correlated with bromacil concentrations of 0.26–261 mg·L⁻¹ (Ashton et al. 1969). Also, development of chloroplast grana and fret systems in oat seedling leaves was inhibited at 2.6 mg·L⁻¹ of bromacil (Ashton et al. 1969). Oats sown in sandy clay loam soil containing 0.2 mg·kg⁻¹ of bromacil showed no signs of injury 4 weeks after planting (Sharma 1989). At 0.8 and 2.0 mg·kg⁻¹, however, oats suffered severe chlorosis, necrosis, and wilting, with symptoms first appearing 7 d after sowing and fully developed within 3 weeks. Bromacil is more phytotoxic to oats sown in sand than soil because it absorbs to clay and organic particles (Sharma 1989).

<table>
<thead>
<tr>
<th>Use</th>
<th>Guideline value (µg·L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation water</td>
<td>0.2*</td>
</tr>
<tr>
<td>Livestock water</td>
<td>1100*</td>
</tr>
</tbody>
</table>

*Interim guideline.
The effects of bromacil treatment on fruits and vegetables vary from beneficial, to tolerant, to harmful. For example, low levels of bromacil (22.5 g·kg⁻¹) improved nutrient accumulation and utilization in young soybeans (Glycine max) by 15.5% dw and 15.6% dw for nitrogen and phosphorus, respectively (Hiranpradit et al. 1972). Young plum trees (Prunus cerasifera) sprayed with 4.48 and 6.73 kg·ha⁻¹ bromacil showed no adverse affects, while young apple trees (Malus sylvestris) suffered 33% and ~100% mortality, respectively (Holloway 1968). Fresh weight of stems and roots of treated apple trees were also reduced by bromacil (Price and Fisher 1966; Holloway 1968). The plant most sensitive to bromacil treatment is the cucumber (Cucumis sativus). Cucumber radicles submerged in 0.1 mg·L⁻¹ of bromacil produced shoots weighing 30% less than control plants. Cucumber seedlings submerged in a bromacil solution for 11 d have a minimum lethal concentration of 0.05 mg·L⁻¹ (Hilton and Nomura 1964).

A SMATC was calculated according to the protocol (CCME 1993) for each crop for which proper data were available. An uncertainty factor of 100 was used in the SMATC calculations because bromacil is very persistent in soils (Jury et al. 1984) and the protocol requires a higher uncertainty factor to be used for persistent substances (CCME 1993). The lowest SMATC in each crop group is adopted as the interim guideline for that group (CCME 1993). The recommended interim guidelines, therefore, are 0.6 μg·L⁻¹ for cereals, tame hays, and pastures based on the lowest SMATC for sorghum, and 0.2 μg·L⁻¹ for other crops based on the lowest SMATC for cucumbers. The lower of these two values, 0.2 μg·L⁻¹, is adopted as the interim Canadian water quality guideline for irrigation water (CCME 1997).

The guideline value may be modified for areas that do not grow the most sensitive species (upon which the guideline was derived) or for areas with sources of the contaminant other than irrigation water (e.g., natural background levels, fertilizer, atmospheric inputs). In these cases, the SMATC value listed in CCME (1997) may be used as a site-specific objective for that crop only.

Livestock Water

Acute toxicity tests indicate that bromacil is most toxic to mammals when administered orally. A sheep dosed for 10 d with Hyvar X (80% WP) at 250 mg·kg⁻¹ showed signs of poisoning after eight doses, while a second dosed for 5 d at 250 mg·kg⁻¹ experienced poisoning after 3 d. A third sheep given 10 daily doses at 25 mg·kg⁻¹ showed no adverse effect (Palmer and Radeleff 1969). Signs of poisoning included anorexia, depression, stomach distension, and uncoordinated gait. In the same study, two cattle given 10 daily doses of 100 mg·kg⁻¹ showed no adverse effects, but a third given 10 daily doses of 250 mg ·kg⁻¹ showed signs of poisoning after just one dose. Acute oral LD₅₀ of technical grade bromacil for adult male, adult female, and male weanling rats are 791, 1641 and 1737 mg·kg⁻¹, respectively (Gaines and Linder 1986). Sherman and Kaplan (1975) reported a higher oral LD₅₀ of 5200 mg·kg⁻¹ for male rats administered Hyvar X (80% WP). Rats given doses of 25, 50, or 250 mg·kg⁻¹ of bromacil for 14 d exhibited behaviour modifications that were consistent neurotoxic effects. While the highest dose significantly decreased the number of rearing events and time spent near cage walls, the lowest dose caused the opposite effect (Lakoski et al. 1993). As little as 100 mg·kg⁻¹ bromacil administered orally to mongrel dogs induced vomiting (Sherman and Kaplan 1975).

Similar toxicity thresholds are found in birds. For example, white leghorn chickens from a commercial hatchery dosed with 500 mg·kg⁻¹ a.i. per day of Hyvar X (80% WP) in gelatin capsules for 10 d gained 24% less weight than the controls (Palmer and Radeleff 1969). The 8-d dietary LC₅₀ for both the mallard duck and the bobwhite quail is >10000 mg·kg⁻¹ (Sherman and Kaplan 1975). Assuming average food consumption rates of 10% body weight per day and that body weight ranges from 1.6 to 2.3 kg, this value represents an LD₅₀ value of >1000 mg·kg⁻¹ per day (Caux et al. 1993).

Bromacil is less toxic when applied dermally. The dermal LD₅₀ for both male and female rats is >2500 mg·kg⁻¹ (Gaines and Linder 1986). Sherman and Kaplan (1975) reported a dermal LD₅₀ >5000 mg·kg⁻¹ for rabbits exposed for 24 h to a paste made from WP (80% a.i.). WP (50% a.i.) applied directly or in a mineral oil suspension to the eyes of adult male rabbits caused mild, temporary conjunctivitis but no corneal injury (Sherman and Kaplan 1975). A 50% aqueous suspension of WP (80% a.i.) irritated the skin of albino guinea pigs (Sherman and Kaplan 1975).

Limited data exist on the chronic toxicity of bromacil to mammals. Female rats fed bromacil as WP (80% a.i.) at 62.5 mg·kg⁻¹ per day for 2 years experienced significantly reduced body weight gains, consumed less food, and used food less efficiently than the control group (Sherman and Kaplan 1975). Both males and females also had slightly higher incidences of focal light cell hyperplasia and focal follicular cell hyperplasia than control animals. Rats that inhaled 1.83 or 3.75 mg·kg⁻¹ per day of bromacil during days 7 to 14 of gestation showed no increase in fetal abnormalities, while those that inhaled 7.92 mg·kg⁻¹ per day experienced a decrease in fetal weight and caudal ossification and an increase in fetal re-sorption rate (Newell and Dilley 1978).
Sufficient data are available to derive an interim Canadian water quality guideline for the protection of livestock water. A TDI was calculated for each species for which suitable toxicological data were available. The TDI is the geometric mean of the LOEL and the NOEL divided by an uncertainty factor. A TDI of 1.4 mg kg\(^{-1}\) per day was calculated for beagle dogs having a LOEL and NOEL of 13.25 and 6.25 mg kg\(^{-1}\) per day, respectively, for body weight loss (Sherman and Kaplan 1975). An RC was derived by multiplying the lowest TDI, in this case that of beagle dogs, by the lowest ratio of body weight to water intake rate, that of leghorn chickens (3.8). To account for exposure to bromacil from sources other than water, the lowest RC (5.3 mg L\(^{-1}\)) is multiplied by an apportionment factor of 0.2 to give an interim water quality guideline of 1100 µg L\(^{-1}\) for the protection of livestock (CCME 1996).

References

For further scientific information, contact:

Environment Canada
Guidelines and Standards Division
351 St. Joseph Blvd.
Hull, QC K1A 0H3
Phone: (819) 953-1550
Facsimile: (819) 953-0461
E-mail: cecg-rcqe@ec.gc.ca
Internet: http://www.ec.gc.ca

© Canadian Council of Ministers of the Environment 1999
Excerpt from Publication No. 1299; ISBN 1-896997-34-1

For additional copies, contact:

CCME Documents
c/o Manitoba Statutory Publications
200 Vaughan St.
Winnipeg, MB R3C 1T5
Phone: (204) 945-4664
Facsimile: (204) 945-7172
E-mail: spccme@chc.gov.mb.ca

Aussi disponible en français.